setup-php/node_modules/regexp-tree/dist/interpreter/finite-automaton/dfa/dfa-minimizer.js

412 lines
12 KiB
JavaScript
Raw Normal View History

2019-09-20 09:41:20 +07:00
/**
* The MIT License (MIT)
* Copyright (c) 2017-present Dmitry Soshnikov <dmitry.soshnikov@gmail.com>
*/
'use strict';
// DFA minization.
/**
* Map from state to current set it goes.
*/
var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }();
function _toArray(arr) { return Array.isArray(arr) ? arr : Array.from(arr); }
function _toConsumableArray(arr) { if (Array.isArray(arr)) { for (var i = 0, arr2 = Array(arr.length); i < arr.length; i++) { arr2[i] = arr[i]; } return arr2; } else { return Array.from(arr); } }
var currentTransitionMap = null;
/**
* Takes a DFA, and returns a minimized version of it
* compressing some states to groups (using standard, 0-, 1-,
* 2-, ... N-equivalence algorithm).
*/
function minimize(dfa) {
var table = dfa.getTransitionTable();
var allStates = Object.keys(table);
var alphabet = dfa.getAlphabet();
var accepting = dfa.getAcceptingStateNumbers();
currentTransitionMap = {};
var nonAccepting = new Set();
allStates.forEach(function (state) {
state = Number(state);
var isAccepting = accepting.has(state);
if (isAccepting) {
currentTransitionMap[state] = accepting;
} else {
nonAccepting.add(state);
currentTransitionMap[state] = nonAccepting;
}
});
// ---------------------------------------------------------------------------
// Step 1: build equivalent sets.
// All [1..N] equivalent sets.
var all = [
// 0-equivalent sets.
[nonAccepting, accepting].filter(function (set) {
return set.size > 0;
})];
var current = void 0;
var previous = void 0;
// Top of the stack is the current list of sets to analyze.
current = all[all.length - 1];
// Previous set (to check whether we need to stop).
previous = all[all.length - 2];
// Until we'll not have the same N and N-1 equivalent rows.
var _loop = function _loop() {
var newTransitionMap = {};
var _iteratorNormalCompletion3 = true;
var _didIteratorError3 = false;
var _iteratorError3 = undefined;
try {
for (var _iterator3 = current[Symbol.iterator](), _step3; !(_iteratorNormalCompletion3 = (_step3 = _iterator3.next()).done); _iteratorNormalCompletion3 = true) {
var _set = _step3.value;
// Handled states for this set.
var handledStates = {};
var _set2 = _toArray(_set),
first = _set2[0],
rest = _set2.slice(1);
handledStates[first] = new Set([first]);
// Have to compare each from the rest states with
// the already handled states, and see if they are equivalent.
var _iteratorNormalCompletion4 = true;
var _didIteratorError4 = false;
var _iteratorError4 = undefined;
try {
restSets: for (var _iterator4 = rest[Symbol.iterator](), _step4; !(_iteratorNormalCompletion4 = (_step4 = _iterator4.next()).done); _iteratorNormalCompletion4 = true) {
var state = _step4.value;
var _iteratorNormalCompletion5 = true;
var _didIteratorError5 = false;
var _iteratorError5 = undefined;
try {
for (var _iterator5 = Object.keys(handledStates)[Symbol.iterator](), _step5; !(_iteratorNormalCompletion5 = (_step5 = _iterator5.next()).done); _iteratorNormalCompletion5 = true) {
var handledState = _step5.value;
// This and some previously handled state are equivalent --
// just append this state to the same set.
if (areEquivalent(state, handledState, table, alphabet)) {
handledStates[handledState].add(state);
handledStates[state] = handledStates[handledState];
continue restSets;
}
}
// Else, this state is not equivalent to any of the
// handled states -- allocate a new set for it.
} catch (err) {
_didIteratorError5 = true;
_iteratorError5 = err;
} finally {
try {
if (!_iteratorNormalCompletion5 && _iterator5.return) {
_iterator5.return();
}
} finally {
if (_didIteratorError5) {
throw _iteratorError5;
}
}
}
handledStates[state] = new Set([state]);
}
} catch (err) {
_didIteratorError4 = true;
_iteratorError4 = err;
} finally {
try {
if (!_iteratorNormalCompletion4 && _iterator4.return) {
_iterator4.return();
}
} finally {
if (_didIteratorError4) {
throw _iteratorError4;
}
}
}
// Add these handled states to all states map.
Object.assign(newTransitionMap, handledStates);
}
// Update current transition map for the handled row.
} catch (err) {
_didIteratorError3 = true;
_iteratorError3 = err;
} finally {
try {
if (!_iteratorNormalCompletion3 && _iterator3.return) {
_iterator3.return();
}
} finally {
if (_didIteratorError3) {
throw _iteratorError3;
}
}
}
currentTransitionMap = newTransitionMap;
var newSets = new Set(Object.keys(newTransitionMap).map(function (state) {
return newTransitionMap[state];
}));
all.push([].concat(_toConsumableArray(newSets)));
// Top of the stack is the current.
current = all[all.length - 1];
// Previous set.
previous = all[all.length - 2];
};
while (!sameRow(current, previous)) {
_loop();
}
// ---------------------------------------------------------------------------
// Step 2: build minimized table from the equivalent sets.
// Remap state numbers from sets to index-based.
var remaped = new Map();
var idx = 1;
current.forEach(function (set) {
return remaped.set(set, idx++);
});
// Build the minimized table from the calculated equivalent sets.
var minimizedTable = {};
var minimizedAcceptingStates = new Set();
var updateAcceptingStates = function updateAcceptingStates(set, idx) {
var _iteratorNormalCompletion = true;
var _didIteratorError = false;
var _iteratorError = undefined;
try {
for (var _iterator = set[Symbol.iterator](), _step; !(_iteratorNormalCompletion = (_step = _iterator.next()).done); _iteratorNormalCompletion = true) {
var state = _step.value;
if (accepting.has(state)) {
minimizedAcceptingStates.add(idx);
}
}
} catch (err) {
_didIteratorError = true;
_iteratorError = err;
} finally {
try {
if (!_iteratorNormalCompletion && _iterator.return) {
_iterator.return();
}
} finally {
if (_didIteratorError) {
throw _iteratorError;
}
}
}
};
var _iteratorNormalCompletion2 = true;
var _didIteratorError2 = false;
var _iteratorError2 = undefined;
try {
for (var _iterator2 = remaped.entries()[Symbol.iterator](), _step2; !(_iteratorNormalCompletion2 = (_step2 = _iterator2.next()).done); _iteratorNormalCompletion2 = true) {
var _ref = _step2.value;
var _ref2 = _slicedToArray(_ref, 2);
var set = _ref2[0];
var _idx = _ref2[1];
minimizedTable[_idx] = {};
var _iteratorNormalCompletion6 = true;
var _didIteratorError6 = false;
var _iteratorError6 = undefined;
try {
for (var _iterator6 = alphabet[Symbol.iterator](), _step6; !(_iteratorNormalCompletion6 = (_step6 = _iterator6.next()).done); _iteratorNormalCompletion6 = true) {
var symbol = _step6.value;
updateAcceptingStates(set, _idx);
// Determine original transition for this symbol from the set.
var originalTransition = void 0;
var _iteratorNormalCompletion7 = true;
var _didIteratorError7 = false;
var _iteratorError7 = undefined;
try {
for (var _iterator7 = set[Symbol.iterator](), _step7; !(_iteratorNormalCompletion7 = (_step7 = _iterator7.next()).done); _iteratorNormalCompletion7 = true) {
var originalState = _step7.value;
originalTransition = table[originalState][symbol];
if (originalTransition) {
break;
}
}
} catch (err) {
_didIteratorError7 = true;
_iteratorError7 = err;
} finally {
try {
if (!_iteratorNormalCompletion7 && _iterator7.return) {
_iterator7.return();
}
} finally {
if (_didIteratorError7) {
throw _iteratorError7;
}
}
}
if (originalTransition) {
minimizedTable[_idx][symbol] = remaped.get(currentTransitionMap[originalTransition]);
}
}
} catch (err) {
_didIteratorError6 = true;
_iteratorError6 = err;
} finally {
try {
if (!_iteratorNormalCompletion6 && _iterator6.return) {
_iterator6.return();
}
} finally {
if (_didIteratorError6) {
throw _iteratorError6;
}
}
}
}
// Update the table, and accepting states on the original DFA.
} catch (err) {
_didIteratorError2 = true;
_iteratorError2 = err;
} finally {
try {
if (!_iteratorNormalCompletion2 && _iterator2.return) {
_iterator2.return();
}
} finally {
if (_didIteratorError2) {
throw _iteratorError2;
}
}
}
dfa.setTransitionTable(minimizedTable);
dfa.setAcceptingStateNumbers(minimizedAcceptingStates);
return dfa;
}
function sameRow(r1, r2) {
if (!r2) {
return false;
}
if (r1.length !== r2.length) {
return false;
}
for (var i = 0; i < r1.length; i++) {
var s1 = r1[i];
var s2 = r2[i];
if (s1.size !== s2.size) {
return false;
}
if ([].concat(_toConsumableArray(s1)).sort().join(',') !== [].concat(_toConsumableArray(s2)).sort().join(',')) {
return false;
}
}
return true;
}
/**
* Checks whether two states are N-equivalent, i.e. whether they go
* to the same set on a symbol.
*/
function areEquivalent(s1, s2, table, alphabet) {
var _iteratorNormalCompletion8 = true;
var _didIteratorError8 = false;
var _iteratorError8 = undefined;
try {
for (var _iterator8 = alphabet[Symbol.iterator](), _step8; !(_iteratorNormalCompletion8 = (_step8 = _iterator8.next()).done); _iteratorNormalCompletion8 = true) {
var symbol = _step8.value;
if (!goToSameSet(s1, s2, table, symbol)) {
return false;
}
}
} catch (err) {
_didIteratorError8 = true;
_iteratorError8 = err;
} finally {
try {
if (!_iteratorNormalCompletion8 && _iterator8.return) {
_iterator8.return();
}
} finally {
if (_didIteratorError8) {
throw _iteratorError8;
}
}
}
return true;
}
/**
* Checks whether states go to the same set.
*/
function goToSameSet(s1, s2, table, symbol) {
if (!currentTransitionMap[s1] || !currentTransitionMap[s2]) {
return false;
}
var originalTransitionS1 = table[s1][symbol];
var originalTransitionS2 = table[s2][symbol];
// If no actual transition on this symbol, treat it as positive.
if (!originalTransitionS1 && !originalTransitionS2) {
return true;
}
// Otherwise, check if they are in the same sets.
return currentTransitionMap[s1].has(originalTransitionS1) && currentTransitionMap[s2].has(originalTransitionS2);
}
module.exports = {
minimize: minimize
};